
Wisconsin Healthcare Engineering Association Water Treatment Lunch and Learn

Scale and Deposition are Often the First Problem Associated With Tower and Refrigeration Systems

Scale and Deposition Occur Due to Chemical and Mechanical Reasons

Potential Causes

- Poor control of scale control and/or pH chemistry
- Running Dissolved Solids Too High (High Conductivity)
- Softener Malfunction
- Bleed Valve Plugged
- No Filtration/ Wrong Filtration

Operational Impact

- Decreased Cooling Capacity
- Increased Energy Costs
- Under Deposit Corrosion Risk Increased
- Sludge Provides "Hide Out" for Pathogenic and System Destroying Bacteria

Myth # 1- Scale In My Condenser System Is My Biggest Concern

- Scale and Deposition is not the biggest water management problem you face. Why?
 - Existing scale and deposition is reversible
 - Risk of new scale and deposition can be minimized
 - Partner with a trustworthy water management company that will provide effective chemistries, expertise and education for you and your staff
 - Softeners will help control hardness scale
 - Effective filtration will control deposition

Corrosion and Erosion of System Components Occur Due to Chemical and Mechanical Reasons

- Potential Causes
 - Poor control of inhibitor chemistry
 - Under feed of Corrosion Inhibitor
 - Over feed of pH Control Chemistry
 - Uncontrolled feed of Oxidizer Biocide. Over feed is corrosive.
 - No Filtration/ Wrong Filtration
 - High Flow Rates

- Operational Impact
 - Decreased Cooling System Life
 - Increased Equipment
 Repair/Replacement Cost
 - Increased Risk of Ammonia Release
 - Under Feed of Oxidizer Can
 Promote Growth of System
 Destroying Bacteria; IRB and
 SRB

Active Corrosion Sites on Chiller Exchanger Head

Corrosion Byproducts Create Fouling

Myth # 2

- Despite being irreversible, risk of general corrosion isn't the greatest risk to the operation of your cooling systems. Why?
 - General corrosion in cooling towers and chilled water can be easily managed through;
 - Use of effective corrosion inhibitor chemistries
 - Regular testing
 - Reliable and consistent feed and control systems (Controllers, pumps and valves)
 - Monitoring corrosion control effectiveness is simple and easy through use of corrosion coupons
 - Education

Reality

- The <u>most significant</u> water related threat to the safe and efficient operation of your cooling systems is from <u>microscopic</u> creatures
 - Fungus will rot wood
 - Algae can plug cooling tower distribution systems
 - Bacteria will
 - Promote deposition
 - Produce severe corrosion
 - Can cause life threatening diseases
 - General corrosion can be accelerated of up to 1000X due to MIC

Algae on Cooling Tower Deck

Algae

Simple Plants Containing Chlorophyll

Require Light for Growth

Present in Surface Waters and Soils

May Form Thick, Rubber-Like Green/Brown Mats

Algae

Fouls Strainers, Distribution Deck Ports, Heat Exchanger Tubes

Provides Matrix for Further Foulant Accumulation

Provides Environment (Food & Shelter) for Bacterial Populations

Single Cell Organisms
Two General Types

Aerobic

Anaerobic

Aerobic Bacteria

Require Oxygen to Live

Sunlight Not Required to Live

Can Degrade Chemical Inhibitors

Most Species in Cooling Towers are Prolific Biofilm Slime Formers

Slime Interferes with Heat Transfer More Than Common Scale

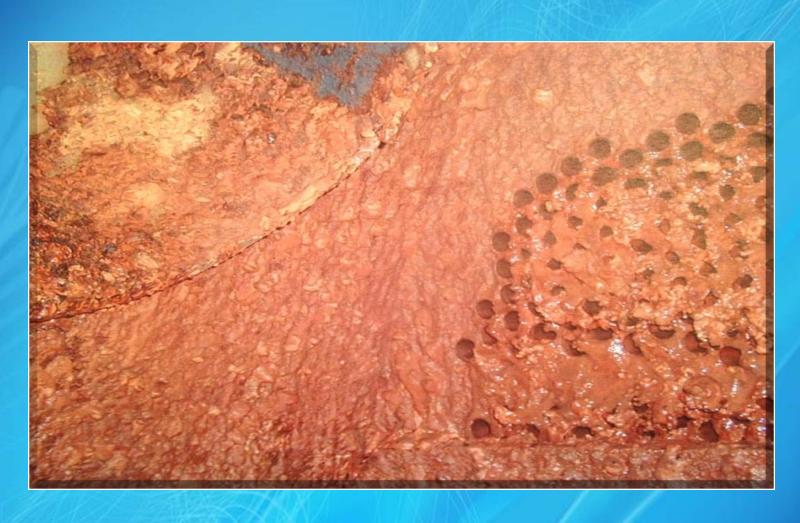
Anaerobic Bacteria

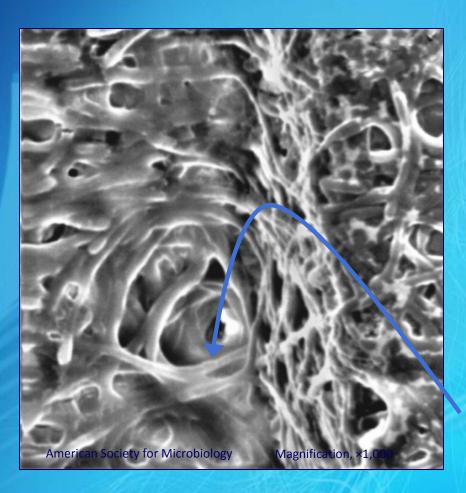
Thrive in Areas of Little or No Oxygen Within Tower System

Under Deposits and Sludge

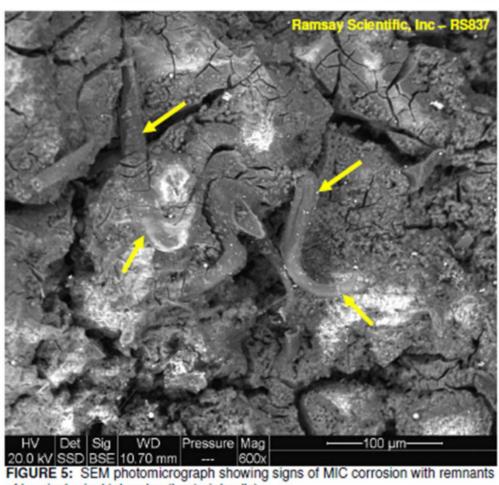
Beneath Algal Mats

Beneath Bacterial Slime Masses


Typical Bacteria- What Kind of Problems Can This Little Guy Cause?


Biological/Organic Mat in a Cooling System Storage Tank

Microbiologically Induced Corrosion on a Chiller Tube Sheet


Biofilm

50 to 90% of biofilm is a non-uniform hydrated polysaccharide matrix composed of microcolonies of different bacteria. Example is The gramnegative facultative anaerobic pathogen Pseudomonas aeruginosa. Anionic properties are conferred to the biofilm by the bacteria allowing Divalent cations to cross-link strengthening the film.

A water channel is seen in the biofilm matrix.

Corrosion Induced by Biofilm

of hemispherical tubercles (bacterial cells).

Legionella Pneumophila Bacteria

Responsible for Legionnaires Disease

Microbial Fouling Problems

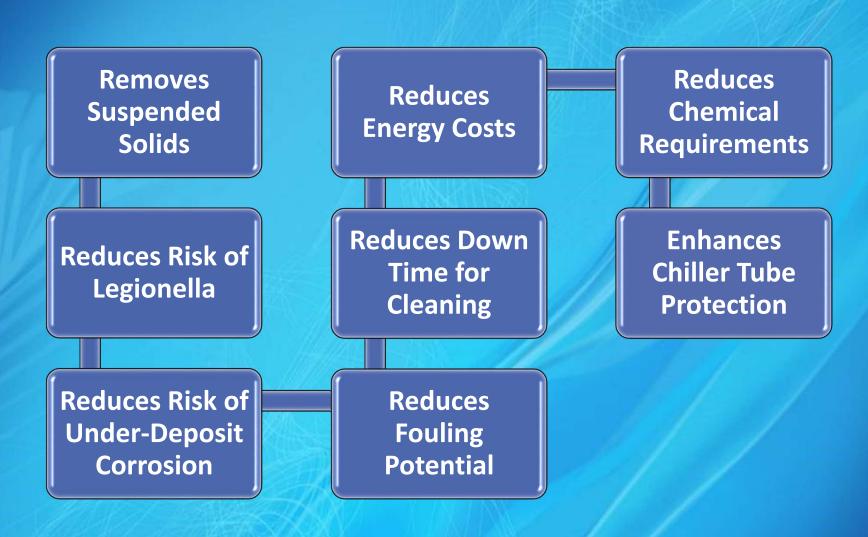
Restriction of Heat Transfer

Flow Restriction

Matrix for Additional Foulants

Potential Under-Deposit Corrosion

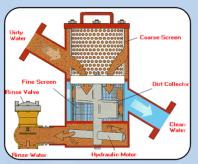
Propagation of Diseases to Humans


Fact- Any of These Problems Could Potentially Shut Down Your Cooling Systems

- Slime in cooling towers will reduce cooling effectiveness
- Bio-film will foul condenser and/or evaporator condenser tubes, reduce water flow, increase energy costs, promote pitting attack in coils, and potentially shut down your cooling system
- Anaerobic bacteria can excrete acid (SRB's) and metabolize steel piping (IRB's). If this sounds really bad, it is
- Legionella bacteria, commonly found in cooling system water, can cause a deadly form of pneumonia called Legionosis (Legionnaires disease) and has resulted in many very expensive lawsuits

OK, This Sounds Bad. What Can Be Done to Minimize Risk of These Problems?

Filtration - Keeping Your Tower and Chilled Loop Systems Clean



Filter Types

Media Filters Cartridge Filters Bag Filters Screen Filter

Eliminate Dead Legs

Redundant Systems Create Problems

Rotate Unused Towers Regularly

Identify Unused Exchangers/Equipment/Piping

Determine Strategies to Eliminate These

Effective Bacteria Control Chemistries

Oxidizing Biocides

Non-Oxidizing Biocides

Adjunct Treatments

Dispersant Compositions

Antifoam Treatments

Oxidizing Biocides

Halogens (Bromine and Chlorine)

- Most Common Oxidizing Treatments
- Continuous Residual
 - > 1.0 ppm (OSHA)
 - 0.5 1.0 ppm (CTI)

Ozone (O₃)

• 0.1 - 0.2 Residual

Chlorine Dioxide (ClO₂)

• 0.25 - 1.0 ppm Residual

Oxidizing Biocides

Fed Continuously at Low Residuals

- Continuous Bio-Population Control
- Reduces Corrosion Tendencies

May Be Fed at Higher Slug Dose

- Season Start-Up & Shut-Down
- Response to Microbial Upset

Non-Oxidizing Biocides (Poisons)

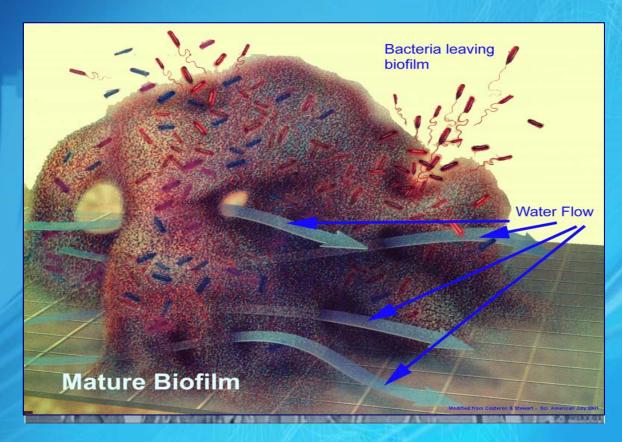
Glutaraldehyde

Isothiazolinone

Quaternary Ammonium Compounds

Copper/Silver/Tin

Thiones


Carbamates

Dibromo-Nitrilo-Propionamide (DBNPA) Methylene bis Thiocyanate (MBT)

Tris
(Hydroxymethyl)
Nitromethane

2-(decylthio) Ethanamine (DTEA)

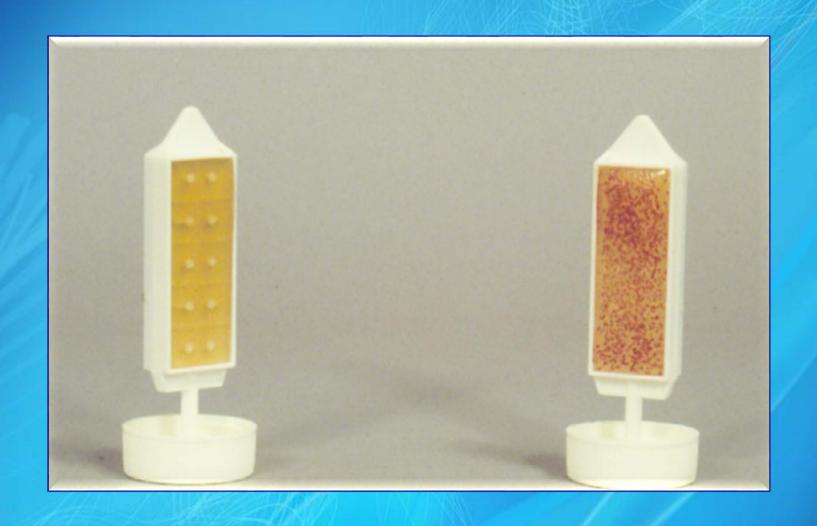
Bio-film Chemistry

Biocide applications typically kill only surface bacteria

Remaining bacteria react by creating more biofilm

Microbiological Monitoring

Visual Inspection


Monitoring Heat Exchanger ΔP and ΔT

Bacteria/Fungi Testing of Tower Water

Microbiological Testing

Total Aerobic Bacterial Culturing

In Closing- Find a Water Treatment Professional Who Will Partner With You To Help You...

Steve Blumke, District Manager sblumke@fremontind.com

Bruce Busch, V.P., R&D bbusch@fremontind.com

www.fremontind.com