Commissioning & Retro-Commissioning Meet Energy Code

Agenda

- Introductions
- What is Commissioning
- Value of Commissioning
- Code Required Cx Process
- Customize your Cx Process
- What documentation should be expected
- Lessons Learned
- What's Next?

Tyson Glimme

Senior Vice President & Madison Office Director

P.E., LEED[®] **AP, QCxP** Commissioning Engineer Mechanical Engineer

- Tyson is a registered Professional Engineer and a Qualified Commissioning Provider with over 10 years of professional experience.
- He specializes in energy services related to high performance systems and facilities.
- He has provided commissioning and energy performance services for various facility types from stem cell research facilities to LEED Platinum Pilot restaurants.

Scott Kading

Director of Commissioning & Commissioning Provider

QCxP

Commissioning Engineer Mechanical Engineer

- Scott is a commissioning provider and mechanical engineer with extensive experience with commissioning services including documentation review, field visits and operational verification of major electrical, HVAC and plumbing systems.
- He has managed MEP system and building envelope commissioning services and LEED reporting and submittal reviews for new construction and retro-commissioning.
- He has also participated in commissioning standards workgroups that develop national standards for project documentation.

is a quality oriented **process** for achieving, verifying and documenting that the performance of facilities, systems and assemblies meets defined objectives and criteria

Why Apply the Commissioning Process?

Of the total life cycle cost of owning & operating a building is design and construction

of the energy today

Commissioning and Retro-Commissioning can reduce a facilities energy costs by more than

Top performing buildings use

less energy per square foot than the worst performers

Why Apply the Commissioning Process in the Healthcare Facilities?

Hospitals are

more energy intensive than other commercial buildings

Courtesy of: http://www.energy.gov

of greenhouse gas emissions are directly related to fossil fuels consumed by health systems facilities

Information provided by U.S. Department of Energy

Spent annually on energy costs

Information provided by U.S. Department of Energy

Most facilities can save more than

of utility costs by conservation measures & improving processes

Information provided by U.S. Department of Energy

Value of Commissioning

Project Cost of Medical Office Building

Total Life Cycle

*high construction cost

~35% to 40% of cost of ownership is energy costs

\$20M \$200M

\$70M

This equates to \$1.4M per year (over 50 years)

The Value of Commissioning

- Standard energy savings associated with commissioning services is ~ 20%
- Normally a minimum of 13% energy savings per year
- A 13% savings per year is roughly \$182,000 of energy savings every year
- \$182,000 savings per year equates to \$4.5M of gross profit (assuming 4% profit margin) necessary to offset this cost

Retro-Commissioning Case Study

Sample Project	Energy Star Rating	Electrical kBTU	Natural Gas kBTU	Total kBTU
Prior to Retro-Cx	49	81,987,454	186,550,300	268,537,754

- Phase I energy savings have resulted in \$296,757 in energy cost savings in the first year
- Facility continues to implement energy saving measures and has reduced complaints
- Results equal 5% electrical savings and 14% gas savings

Retro-Commissioning Case Study

Sample Project	Energy Star Rating	Electrical kBTU	Natural Gas kBTU	Total kBTU
Prior to Retro-Cx	49	81,987,454	186,550,300	268,537,754
After Phase I	nase I 60	76,911,719	172,396,700	249,308,419

- Phase I energy savings have resulted in \$296,757 in energy cost savings in the first year
- Facility continues to implement energy saving measures and has reduced complaints
- Results equal 5% electrical savings and 14% gas savings

Retro-Commissioning Case Study

Sample Project	Energy Star Rating	Electrical kBTU	Natural Gas kBTU	Total kBTU
Prior to Retro-Cx	49	81,987,454	186,550,300	268,537,754
After Phase I	60	76,911,719	172,396,700	249,308,419
After Phase 2	62	78,644,494	160,512,000	239,156,494

- Phase I energy savings have resulted in \$296,757 in energy cost savings in the first year
- Facility continues to implement energy saving measures and has reduced complaints
- Results equal 5% electrical savings and 14% gas savings

Commissioning Designations

School	Degree	Designation
UW-Madison	Qualified Commissioning Process Provider	QCxP
	Accredited Commissioning Process Authority Professional	CxAP
	Accredited Commissioning Process Manager	CxM
Building Commissioning	Associated Commissioning Professional	ACP
Association (BCxA)	Certified Commissioning Firm	CCF
ASHRAE	Building Commissioning Professional Certification	BCxP
National Environmental Balance Bureau (NEBB)	Commissioning Process Professional	CxPP
AABC Commissioning Group (acg)	Certified Commissioning Authority	СхА
Association of Energy Engineers (AEE)	Certified Building Commissioning Professional	CBCP

Commissioned Systems Required by Code

Mechanical Systems – Section C403

- Heating and Cooling 5°F Deadband
- Off-Hour Controls controlled by time clock or programmable Controller
- Unoccupied spaces must be capable of resetting from 55°F to 85°F
- Systems serving < 25,000 SF or serve more than 1 floor must be divided into isolation areas
- Heat trace shall have temperature setbacks
- Hot water boiler setback temperatures

- Required Energy Recovery
- Demand Control Ventilation for spaces > 500 SF and average occupant load 25 people/1000 SF
- Kitchen Exhaust Systems shall not provide
 < 10% make-up air directly into hood
- Supply air temperature reset controls
- Heat recovery for service water heating
 - Facility is in operation 24 hours/day
 - Heat capacity < 6,000,000 Btu/Hr
 - Hating load exceeds 1,000,000 BTU/Hr

Electrical Systems – Section C405

- Mandatory Occupancy Sensor Controls
 - Eliminate Nuisance Trips
 - Maximize Performance
- OR Time Switch Controls
 - Exception: Patient Care spaces or endanger occupant safety
- AND Manual Light Reduction Controls
- Day-Light Responsive Controls (spaces with >150 watts of general lighting).
 - Exception: Patient Care Spaces

- Specific Application Controls
 - Display and Accent Lighting
 - Task lighting to be wired directly to readily accessible control device
- Exterior Lighting Controls
 - Dawn to Dusk Control
 - Daylight Controls
 - Lighting to be reduce by >30% between midnight and 6 am if activity is not sensed within 15 minutes

Commissioning Process per ASHRAE Guidelines 0-2005

Planning Phase

		Assist the Owner in creating the OPR
0		Develop a preliminary copy of the Commissioning Plan
		Develop Submittal Checklists
		Develop Design Phase Checklist

- International Energy Conservation Code
- LEED Fundamental Commissioning Prerequisite

Design Phase

Document the Basis of Design

Review design for compliance to the OPR

Integrate Commissioning Process requirements during construction and occupancy phases into the specifications

LEED Enhanced Commissioning

LEED Fundamental Commissioning Prerequisite

Construction Phase

		Review submittals for compliance
		On-going Cx Meetings
		Develop and track construction checklists
		Obtain and verify O&M Manuals for inclusion into the Systems Manual
0		Testing and Balancing is verified (water and air)
		Accomplish initial training and O&M walk-throughs

- International Energy Conservation Code
- LEED Enhanced Commissioning
- LEED Fundamental Commissioning Prerequisite

0	Accomplish and verify Functional Performance Testing (FPT's)
	Verify on-going system training
	Verify the Commissioning Issues Record
	Review and verify final O&M documentation
	Substantial Completion

• International Energy Conservation Code

LEED Fundamental Commissioning Prerequisite

Operation Phase

0		Provide Preliminary Commissioning Report
		Perform seasonal testing and re-training
		Review equipment performance prior to warranty expiration and provide recommendations to improve performance
-		Lessons learned meeting
0		Complete and submit Final Commissioning Report
		Complete and submit Final Commissioning Report including Systems Manual

- International Energy Conservation Code
- LEED Enhanced Commissioning
- LEED Fundamental Commissioning Prerequisite

Commissioning Services

System Commissioning – Section C408

- Develop Commissioning Plan
- Verify Air System Balancing
- Verify Water System Balancing
- Verify Functional Testing
- Provide Preliminary Commissioning Report
- Written Balance Report
- Final Commissioning Report

The Commissioning Plan

- Description of the goals for the project and the commissioning scope
- Listing of equipment and systems to be tested including expectations.
- Functions to be tested
- Optimal conditions that will be tested

General Project Descripti	on	
Seneral Project Descripti		
The University of North Texas Syst Denton, Texas. The project is to be certification in the U.S. Green Build Henneman Engineering, Inc. has b LEED commissioning services for t	tem has resolved to construc e a high performance, green I ding Council (USGBC) LEED- een selected as the Commis the project.	t a new New Football Stadium i building with a targeted Silver NC v2.2 rating program. sioning Agent (CxA) to provide
The building design will incorporate green building principles. With enh sophisticated lighting controls, high energy assets, fundamental and er conscious design elements, the Ub building that will capitalize on the p construction procedures.	e many elements of sustainal anced energy efficient buildir nefficiency heating and coolin nhanced commissioning serv VT Stadium facility is intender ositive, long-term benefits of	ele, environmentally friendly g envelope characteristics, g equipment, on-site renewabl ces and many other energy- t to be a high performance sustainable design and
Systems To Be Commiss	ioned	
The following list of systems, comp commissioning process for this pro	oonents, assemblies and/or e vject:	quipment will be included in the
Mechanical HVAC&R Systems Cor	mmissioning	
 HVAC Piping and Pumps 		
 HVAC Air Distribution 		
 HVAC Air Cleaning Devices 	s	
 Central Cooling Equipment 		
 Central HVAC Equipment 		
 Decentralized HVAC Equip HVAC Instrumentation and 	ment Control Systems	
Plumbing Systems Commissioning	and Dumme	
 Domestic Hot Water Piping Domestic Hot Water Equipr 	ment	
Electrical Systems Commissioning		
 Facility Lighting Systems (In 	nterior Lighting Devices and	Controls)
 Facility Lighting Systems (E) 	Exterior Lighting Devices and	Controls)
 Specialty Lighting Systems 	(Sports Lighting Devices and	Controls)
 Emergency Power System 	(Generator, UPS, Transfer S	witches)
Renewable Energy Systems Comm	missioning	
 Wind Power Generation Sy 	stems	

Verification of Air System Balancing

- Each zone shall be equipped with air balancing device
- Constant volume systems shall not have discharge dampers installed
- Demand Control Ventilation has limits
- Un-explained "Winds"

Verification of Air System Balancing

- Each zone shall be equipped with air balancing device
- Constant volume systems shall not have discharge dampers installed
- Demand Control Ventilation has limits
- Un-explained "Winds"

Verification of Hydronic System Balancing

- Each heating and cooling coil to be provided with means for balancing and measuring flow.
- Pump impeller to be trimmed or pump speed adjusted to meet design flow.
- When should the pump impeller be trimmed vs. speed adjusted?
 - "Permanent Conditions"

				VALVE			
SERVICE OR DESIGNATION	SIZE	MODEL	DESIGN GPM	SETPOINT	VALVE P.D.	GPM	NOTES
Room				DEGREE			
47	1"	B&G	14	0	12.2	13.5	
70N	1.25"	B&G	13.2	40	43	12.4	
73	2"	TA	24.5	1.4	24	25.1	
143	1.5"	B&G	56.1	24	52	52	
145	1.5"	B&G	46.4	0	12.1	46	
145	1.5"	B&G	9	50	16.1	9.8	
277	1.5"	B&G	26.6	34	3.5	24.9	
278	1"	B&G	8.8	30	5.8	9.1	
343	2"	B&G	35.9	33	3.2	36	
377A	1.5"	B&G	59.2	0	17.6	55	
445	1"	B&G	2.5	25	3.5	2.7	
445	1"	B&G	4.2	38	31	4.1	
🕂 473K	1.25"	B&G	11	33	17	11.1	
/ `473M	1.25"	B&G	6.2	41	14	6.8	
REMARKS:			_				
There are 3 balan	ce valves	reflected	for corrido	or 445. VAV 4	-4, 4-5, 4-11	., 4-12, a	nd 4-13
nave been strugg	ing with I	neating. 1	he additio	nal balance v	alve should h	ave roug	hly 12.5
pm through it.							

When to trim the impeller?

Design Capacity =400.0 GPM Design Head =75.0 Feet

Suction Size = 4 " Suct. Velocity = 10.1 fps Discharge Size = 3 " Disc. Velocity = 17.4 fps

Min. Imp. Dia. = 7 " Max. Imp. Dia. = 9.5 " Cut Dia. = 9 "

Max. Flow = 767 GPM B.E.P. Flow = 505 GPM

Eff. @ Duty-Point = 81.22 % Motor Size =15 HP

B.H.P. @ Duty-Point = 9.51 BHP Max. B.H.P. for Imp. Cut = 11.78 BHP

Functional Testing & Associated Reports

- Includes all modes described in Sequence of Operations
- All redundant or back-up modes
- Performance of alarms
- Modes of operation related to loss of power or restoration of power

Functional Test Procedure

Factory Fabricated Custom Air Handling Unit

FT ID:	FT-237313
Tag ID:	AHU-25
Location:	MECHANICAL ROOMS, FLOORS 8

General Information:

Date:	
8/27/2013	

Participants:

Name	Organization
Tyson Glimme	Henneman Engineering
Edward Walters	UW FP&M

Recorded by: Tyson Glimme

Henneman Engineering, Inc.

Objective:

This test is performed to investigate the ability of the AHU to maintain discharge temperatures to supply air distribution systems for the facility, as well as evaluate the functionality of the integral sequences related to this primary service.

. Sequence of Operation:

LABORATORY AIR HANDLING UNITS CONTROL GENERAL:

Air handling units and are factory-fabricated, custom air handling units, located on each floor. These units supply air to the laboratory, laboratory support spaces, and office spaces in the building. Each unit has (2) supply fans that are each sized to provide 50% of the peak supply air requirement of the building service area. Each air handling unit has a single return fan with relief / return dampers.

Each air handling unit operates as a separate system.

System is designed as heating-cooling, single duct, variable volume reheat system with heat recovery.

UNIT OPERATING MODE: System shall operate continuously with single operating mode.

UNIT OPERATION: Unit operation shall be automatic and activated through building automation system.

Control contractor to provide all necessary devices such as relays required for interface.

Functional Test Procedure Air Handling Unit 1

Integrated Systems Tests for Healthcare & Reports

- Energy Recovery Wheels
- Redundant AHU's
- Exhaust Fans tied to facility systems
- Modes of operation related to loss of power or restoration of power

	AHU Bridge	Damper Sequence
	FT ID: FT-2373	13
	Tag ID: AHU-24, 2	5, 26, 27, 28
	Location: ALL FLOOP	IS
. General Information	1:	
11/19/2013		
and 2/4/2014		
Participants:	Name	Organization
Edward Walter	The second se	Henneman Engineering
Darren Schumacher		Henneman Engineering
-		
Recorded by:		
Tyson Glimme		Henneman Engineering, Inc.
systems for the facility, a	s well as evaluate the function	anality of the integral sequences related to this primary
3. Sequence of Opera	tion:	
 Sequence of Opera 	tion:	
3. Sequence of Opera	tion:	
 Sequence of Opera 	tion:	
 Sequence of Opera 	tion:	
 Sequence of Opera 	tion:	
 Sequence of Opera 	tion:	
 Sequence of Opera 	tion:	
 Sequence of Opera 	tion:	
 Sequence of Opera 	tion:	
. Sequence of Opera	tion:	
. Sequence of Opera	tion:	
. Sequence of Opera	tion:	
 Sequence of Opera 	tion:	
 Sequence of Opera 	tion:	

Integrated Systems Tests for Healthcare & Reports

- Energy Recovery Wheels
- Redundant AHU's
- Exhaust Fans tied to facility systems
- Modes of operation related to loss of power or restoration of power

SMO Smok The c Fire 4 and s damp wirin DDC	KE CONTROL: e detectors are located in e tectors will be furnished, in Marm Control Module shall hall be programmed by the ers on smoke detection of g between the fire alarm cor contractor.	ach air ha nstalled ar be locate fire alarm any of th ttrol modu	ndling d wire d at th contra e asso ile and	y unit discharge duct and d to the Fire Alarm Syste te temperature control pa actor to shutdown the Al ciated duct smoke detec the AHU to shutdown th	the return f em by the Ele nel by the ele HU and close tors for the ac AHU shall	an dis ectrica ectrica smol AHU, be pro	charge di l Contrac d contrac æ / isolat Associa wided by	uct. tor. tor, ion ited the
shall	n fan's smoke detector, upor close and respective office s	pply air to	of sm ermina	oke, shall stop respective ils shall be modulated to	minimum po	eturn sition.	air dampe	er
4. Test	Equipment Used:			Accuracy	Calibration	Certif	icate Avai	lable
Alnor	Velometer	0.5°F		Accuracy	Yes	- Ocrai	ioute / trui	incircular to
	Manamatar	0.01*			No			
5. Initia	Conditions (Pre-Test):	0.01						
5. Initial	Conditions (Pre-Test):	hecked)		Expected Result (pass if o	Theoked)		Value	U
5. Initial	Conditions (Pre-Test): Test Procedure (complete # c 0: Bridge Damper Pre-Test	hecked)	ns (11-	Expected Result (pass // o -19-2013/2-04-2013)	thecked)		Value	U
5. Initial Mode 0.1	Conditions (Pre-Test): Test Procedure (complete if c 0: Bridge Damper Pre-Test Prior to overriding the AHU document the existing con	hecked)	ns (11-	Expected Result (pass if c 19-2013/2-04-2013) Current OAT	thecked)		Value 8.3/15. 6	U
5. Initial	Conditions (Pre-Test): Test Procedure (complete # c 0: Bridge Damper Pre-Test Prior to overriding the AHU document the existing cond	hecked) Condition	ns (11-	Expected Result (bass if c 19-2013/2-04-2013) Current OAT Current MAT	(hecked)		Value 8.3/15. 6 52.4/4 9.9	U
5. Initial	Conditions (Pre-Test): Test Procedure (complete # c 0: Bridge Damper Pre-Test Prior to overriding the AHU document the existing cond	hecked) Condition ditions.	ns (11-	Expected Result (pass if of 19-2013/2-04-2013) Current OAT Current MAT Current DAT	hecked)		Value 8.3/15. 6 52.4/4 9.9 66.9/6 7	
5. Initial	Conditions (Pre-Test): Test Procedure (complete r/c 0: Bridge Damper Pre-Test Prior to overriding the AHU document the existing cond	hecked) Condition ditions.	ns (11-	Expected Result (pass if c 19-2013/2-04-2013) Current OAT Current MAT Current DAT Current Operating Mode (Eco. Heating)	checked)		Value 8.3/15. 6 52.4/4 9.9 86.9/6 7 Heat	
5. Initial	Conditions (Pre-Test): Test Procedure (complete if c 0: Bridge Damper Pre-Test Prior to overriding the AHU document the existing cond	hecked) Condition , ditions.	ns (11-	Expected Result (pass if c 19-2013/2-04-2013) Current OAT Current MAT Current DAT Current Derating Mode (Eco, Heating) Current HV Position	checked)		Value 8.3/15. 6 52.4/4 9.9 86.9/6 7 Heat 39.7/4 5	
5. Initial	Conditions (Pre-Test): Test Procedure (complete if c 0: Bridge Damper Pre-Test Prior to overriding the AHU document the existing cond	hecked) Condition ditions.	ns (11-	Expected Result (pass in 19-2013/2-04-2013) Current OAT Current MAT Current DAT Current Operating Mode (Eco., Heating) Current HV Position Current CV Position	checked)		Value 8.3/15. 6 52.4/4 9.9 86.9/6 7 Heat 39.7/4 5 0/0	
5. Initial	Conditions (Pre-Test): Test Procedure (complete if c 0: Bridge Damper Pre-Test Prior to overriding the AHU document the existing cond	hecked) Condition ditions.	ns (11-	Expected Result (bass if o 19-2013/2-04-2013) Current OAT Current MAT Current DAT Current Operating Mode (Eco, Heating) Current HV Position Current CV Position Current OA Damper pos (BAS/Actual)	checked)		Value 8.3/15. 6 52.4/4 9.9 86.9/6 7 Heat 39.7/4 5 0/0 Open	
5. Initia	Conditions (Pre-Test): Test Procedure (complete if o 0: Bridge Damper Pre-Test Prior to overriding the AHU document the existing cond	hecked) Condition	ns (11-	Expected Result (pass if c 19-2013/2-04-2013) Current OAT Current MAT Current DAT Current DAT Current Operating Mode (Eoc, Heating) Current Aposition Current CV Position Current CV Position Current Return Air Dam (BAS/Actual) Current Return Air Dam	thecked)		Value 8.3/15. 6 52.4/4 9.9 86.9/8 7 Heat 39.7/4 5 0/0 Open 49.8/2 0.9	
5. Initial	Conditions (Pre-Test): Test Procedure (complete ric 0: Bridge Damper Pre-Test Prior to overriding the AHU document the existing cond	hecked) Condition , itions.	ns (11-	Expected Result (pass inc 19-2013/2-04-2013) Current OAT Current DAT Current DAT Current Operating Mode (Eco, Heating) Current HV Position Current CV Position Current CV Position Current Actual) Current Relief Damper F (BAS/Actual) Current Relief Damper F	checked)		Value 8.3/15. 8 52.4/4 9.9 88.9/6 7 Heat 39.7/4 5 0/0 Open 49.8/2 0.9 0/0	

Integrated Systems Tests for Healthcare & Reports

- Energy Recovery Wheels
- Redundant AHU's
- Exhaust Fans tied to facility systems
- Modes of operation related to loss of power or restoration of power

ID	Test Procedure (complete If checked)		Expected Result (pass If checked)		Value	Uni
			Supply Fan TSP	\boxtimes		-
			Current Floor SP	\times		
			Return Fan VFD (Hz/RPM/%)	\times		
			Return Fan TSP	\times		
			Return Flow	\times		
0.2	Document AHU conditions of AHU	\times	Current Floor SP	\times	1.003	
	providing bridge air		Current Supply Fan (Hz, A,%) 5th	\times	55.5%	
			6th	\times	50.9%	
			7 ^m	\times	56.8	
			8th	\times	51.8	
			9th	\times	48.8	
			Current supply fan RPM	\times	0	
			Current Return Fan Flow	\boxtimes	1253	
ID	Test Procedure (complete if checked)	-	Expected Result (pass If checked)	-	Value	Un
Mode	1: Remote Start/Stop (Failing two low	vest A	HU's)	1 67		
ID	Test Procedure (complete If checked)		Expected Result (pass If checked)		Value	Un
1.1	Over-ride unit into occupied mode.		Unit is in occupied mode.			T
			Fire/smoke/isolation damper in			-
			bridge ductwork closed.	-		
			Supply fire/smoke/isolation damper	Χ		
			opened.		1	
1.2	Over-ride one unit to OFF.		opened. Unit de-energized.			
1.2	Over-ride one unit to OFF.		opened. Unit de-energized. Outside air and exhaust dampers close fully and return air damper opene fully.			
1.2	Over-ride one unit to OFF.		opened. Unit de-energized. Outside air and exhaust dampers close fully and return air damper opens fully. Fire/smoke/isolation damper in bridge ductwork opened within 120			
1.2	Over-ride one unit to OFF.		opened. Unit de-energized. Outside air and exhaust dampers close fully and return air damper opens fully. Fire/smoke/isolation damper in bridge ductwork opened within 120 seconds. Supply smoke/isolation damper closed within 120 seconds.			
1.2	Over-ride one unit to OFF.		opened. Unit de-energized. Outside air and exhaust dampers dose fully and return air damper opens fully. Fire/smoke/isolation damper in bridge ductwork opened within 120 seconds. Supply smoke/isolation damper closed within 120 seconds. Alarm generated at BAS within 60 seconds.			
1.2	Over-ride one unit to OFF.		opened. Unit de-energized. Outside air and exhaust dampers close fully and return air damper opens fully. Fire/smoke/isolation damper in bridge ductwork opened within 120 seconds. Supply smoke/isolation damper closed within 120 seconds. Alarm generated at BAS within 60 seconds. Chilled water valve closed.			2
1.2	Over-ride one unit to OFF.		opened. Unit de-energized. Outside air and exhaust dampers close fully and return air damper opens fully. Fire/smoke/isolation damper in bridge ductwork opened within 120 seconds. Supply smoke/isolation damper closed within 120 seconds. Alarm generated at BAS within 60 seconds. Chilled water valve closed. Steam valve opens and face & bwnass mortulates to full face			2
1.2	Over-ride one unit to OFF.		opened. Unit de-energized. Outside air and exhaust dampers close fully and return air damper opens fully. Fire/smoke/isolation damper in bridge ductwork opened within 120 seconds. Supply smoke/isolation damper closed within 120 seconds. Alarm generated at BAS within 60 seconds. Chilled water valve closed. Steam valve opens and face & bypass modulates to full face. Return fan dis-engages.			2
1.2	Over-ride one unit to OFF.		opened. Unit de-energized. Outside air and exhaust dampers close fully and return air damper opens fully. Fire/smoke/isolation damper in bridge ductwork opened within 120 seconds. Supply smoke/isolation damper closed within 120 seconds. Alam generated at BAS within 80 seconds. Chilled water valve closed. Steam valve opens and face & bypass modulates to full face. Return fan dis-engages. Humidifier valve closed.			2
1.2	Over-ride one unit to OFF.		opened. Unit de-energized. Outside air and exhaust dampers close fully and return air damper opens fully. Fire/smoke/isolation damper in bridge ductwork opened within 120 seconds. Supply smoke/isolation damper closed within 120 seconds. Alarm generated at BAS within 80 seconds. Chilled water valve closed. Steam valve opens and face & bypass modulates to full face. Return fan dis-engages. Humidifier valve closed.			2
1.2	Over-ride one unit to OFF.		opened. Unit de-energized. Outside air and exhaust dampers close fully and return air damper opens fully. Fire/smoke/isolation damper in bridge ductwork opened within 120 seconds. Supply smoke/isolation damper closed within 120 seconds. Alarm generated at BAS within 60 seconds. Chilled water valve closed. Steam valve opens and face & bypass modulates to full face. Return fan dis-engages. Humidifier valve closed. Record static pressure of failed unit and recovery unit once stabilized			2
1.2	Over-ride one unit to OFF.		opened. Unit de-energized. Outside air and exhaust dampers close fully and return air damper opens fully. Fire/smoke/isolation damper in bridge ductwork opened within 120 seconds. Supply smoke/isolation damper closed within 120 seconds. Alarm generated at BAS within 60 seconds. Chilled water valve closed. Steam valve opens and face & bypass modulates to full face. Return fan dis-engages. Humidifier valve closed. Record static pressure of failed unit and recovery unit once stabilized 5 th Hz/A/%		0	2

Preliminary Commissioning Report

- Separate sections:
 - Mechanical Testing
 - Service Water Testing
 - Electrical Systems Testing
- Itemized deficiencies found during testing
- Necessary deferred tests that could not be accomplished
- Climate conditions needed for deferred tests

Engine	anny mo.
Commission LEED-NC v3.0 Enhanced Commissio	ing Report ning Services
	VA Outpatient Clinic 1766 Majestic Lane Billings, MT 59102
Owner / User:	
Program Manager:	
Architect:	
MEP Engineer:	
Commissioning Agent:	Henneman Engineering, Inc. 1232 Fourier Drive, Suite 101 Madison, WI 53717-1960
October 07, 2015	

Preliminary Commissioning Report

- Separate sections:
 - Mechanical Testing
 - Service Water Testing
 - Electrical Systems Testing
- Itemized deficiencies found during testing
- Necessary deferred tests that could not be accomplished.
- Climate conditions needed for deferred tests.

🔥 Henneman

Table of Contents	
EXECUTIVE SUMMARY	
SECTION I: INTRODUCTION	6
Section Summary	6
General Project Description	6
Overview of the Commissioning Process	9
SECTION II: COMMISSIONING TEAM	
Section Summary	
Cx Team Directory	
SECTION III: COMMISSIONING DOCUMENTS	13
Owners Project Requirements (OPR)	
Cx Specifications	
Cx Design Review Comments	
Cx Schedule	
Training Plans	
Construction Verification Checklist	
Functional Performance Test (FPT)	
SECTION IV: ROLES & RESPON SIBILITIES	
Overview	
Commissioning Agent	
Owner	
Design Team (A/E)	
Construction Team (C/CM)	
LEED-NC v3.0 Enhanced Commissioning Services TOC-1	Henneman Expineration loss

Itemized Deficiencies

Cx STATUS REPORT (CSR) LOG

CX STATUS REPORT (CSR) LOG		Trade of Discipline Type				Activity Type			
		HVAC	HVAC Systems	FSS	Fuel Supply Systems	FT	Functional Testing	SU	Start-up
Desire of Manager	MA Dillerer	CTRL	Controls Systems	EPWR	Electrical Power Systems	IST	Integrated System Testing	SR	Submittal Review
Project Name:	VA Billings	MECH	Mechanical Systems	LTG	Lighting Systems	OMT	OSM Training	SRC	System Readiness Checklist
Project Location:	Billings, Montana	FP	Fire Protection Systems	FA	Fire Alarm Systems	SO	Site Observation	TAB	Testing, Adjusting, & Balancing
Project Owner:	Summit Smith	DWS	Domestic Water Systems	COM	Communication Systems	Comme	ent Type		
HEI Client:	Summit Smith	PDS	Plumbing Drain Systems	ARCH	Architectural Systems	CL	Clarification	LEED	LEED Related Issue
CSR Revision:	Revision #06	MGAS	Medical / Lab Gas Systems	MISC	Miscellaneous	CO	Coordination Issue	0	Observation
CONTROVISION.		-				CR	Critical Issue	R	Recommendation
Revision Date:	Date 8/14/2015					DEF	Deficiency	s	Suggestion

	4		Comment	Activity					Date
D	ID Cross Reference	Action Party	Туре	Туре	CxA Comment	Date Entered	Status	Response / Resolution	Resolved
								Heating valve and fan operate in parallel. There is no	
					UH-1 is specified to have a aqua stat to control the fan, the aqua stat is not		L	aqua stat. Is this acceptable. 2/23/2015 - R&D	
001	Functional Test	R&D	DEF	FT	visible on the unit.	1/26/2015	Resolved	Response: System can function without aqua stat.	2/23/2015
	1	1			CRAC 5 is set to 82 degrees and evalues the space. The spilling is easy to				
		1			the surrounding spaces which basically means a CRAC should not be				
	1	1			needed. A more reasonable snace temperature needs to be set. Should			4/30/2015 - The thermostat needs to be set by the owner	
002	Eunctional Test	Summit Smith	DEE	FT	this be disabled when the OA temps are below 60 degrees	1/26/2015	Resolved	This is not a contractor issue and is considered resolved	4/30/2015
002	r unduonar rest	Summe Simer	021		this be disabled when the OA temps are below ob degrees.	1/20/2010	resolved	This is not a contractor issue and is considered resolved.	4/00/2010
	1	1			CRAC 5 does not report to the BAS system along with the associated				
003	Functional Test	Summit Smith	DEF	FT	condensate pump. This is a MR Slim which does not have reporting ability.	1/26/2015	Resolved	2/23/2015 - Trane Response - OK	2/23/2015
	· · · · · · · · · · · · · · · · · · ·		1						
		1			UH-1 is specified and submitted to have a line voltage thermostat. The unit				
004	Functional Test	R&D	DEF	FT	appears to control to a temperature sensor in the mechanical room.	1/26/2015	Resolved		2/23/2015
		1						T	
		1			CUH-1 has two thermostats in the space (one on the wall and one mounted			The thermostat on the wall is controlling and the	
005	Eurotional Test	Trans	DEE	ET	on the unit) the wall appears to control the heating valve of the unit and the	1/28/2014	Berelund	thermostat on the unit can control the fan but is not used	1/20/2015
000	Functional Test	trane	DEP	F1	speed of the supply fan. what does the other thermostat do?	1/20/2015	Resolved	Ior control .	1/30/2015
		1						Per the spec the fan is only to run when hot water is	
		1			CUH's are specified to control the fan via a agua stat mounted on the			routed to the unit. Is the operation of the fan in parallel	
		1			heating piping. Aqua stat not visible. The fan is always on at the lowest			with the heating valve acceptable? 2/23/2015 - R&D	
006	Functional Test	R&D	DEF	FT	speed and CUH modulates heating coil an increases fan speed if needed.	1/26/2015	Resolved	Response: Parallel operation will be acceptable.	2/23/2015
				1				CUH-2 is controlled via its thermostat integral to the unit.	
007	Functional Test	Trane	DEF	FT	CUH-2 only has the thermostat mounted on the unit.	1/26/2015	Resolved	Can be seen at the device level of the BAS.	1/30/2015
								CUH-3 controls in parallel with the VAV box. The same	
		1			CUH-3 serves the front vestibule along with VAV S1-6 and is not affected			thermostat controls both. Fan is to be updated to only	
		-		-	by changes in thermostat in the vestibule. What is the control of the CUH		L	control upon a call for heating. 2/23/2015 Resolved per	
008	Functional Test	Trane	DEF	FI	In relation to the VAV?	1/26/2015	Resolved	R&D response.	2/23/2015
		1			Inculation has been removed from the dustwork above the front vestibule			I his is the result of the heating issues in the vestibule.	
000	Eurotional Test	Summit Smith	DEE	FT	Was this intentional, and accentable	1/26/2015	Upresolved	insulation has not been replaced	
000	r unuturiar rest	Samme Smith		+	rras uns menuorial, and acceptable.	1/20/2010	onresorved	managon nas not been replaced.	
	'	1							
		1							
		1						V AV S1-15 is actually installed as S3-53. During testing	
		1			VAV Box 1-15 is 100% open while all other VAV boxes in 37% open. This			the VAV was re-assigned to RTAC #3. The actual air	
010	Functional Test	Norpac	DEF	FT	box is not reflected on the drawings, where is it located?	1/26/2015	Resolved	flow in the cart washing areas needs to reevaluated.	1/29/2015
					VAV 3-18 design is 840 cfm and controlling to 1000 cfm. Where did				
		L			additional air come from. This is ambulatory surgery family waiting and is			VAV box was reset to 840 cfm. The e noise is the result	
011	Functional Test	Trane	DEF	FT	noisy and over pressurized.	1/26/2015	Resolved	of the high pressure needed for the OR branch.	1/30/2014
	1	1			Convector C-1 (126) is wired to VAV 1-26 controller. It will then go into			C 1 is controlled based on factory setting with factory	
	1	1			heating when this VAV box goes into heating and when its space falls			deadband of estimated 0.5 degrees VAV 1-28 is the	
		1			perow setpoint. C-1 space is not relative to VAV 1-20, this should be 1-40.			nearest geographic VAV. The unit controls to its own	
		1						setpoint They were set to 68 degrees 2/23/2015 - R&D	
	1	1						Response: Control of VAV 1-26 and Convector C-1	
012	Functional Test	R&D	DEF	FT		1/26/2015	Resolved	should be independent from one another.	1/30/2014

Final Commissioning Report

- Separate sections (Similar to Preliminary Report):
 - Mechanical Testing
 - Service Water Testing
 - Electrical Systems Testing
- Results of all tests
- Disposition of deficiencies, including corrective measures
- Functional performance test procedures used during the commissioning process

Hennen Engineer	nan ing Inc.		
COMMISSIONI FINAL REPORT	NG REPORT		
Wisconsin Institute 1111 Highland Avenue,	es for Medical Research Madison, WI 53726	- Center Tower	
DSF Project No. 02G1	S-01		
Ŵ			
School of Medi and Public Hea UNIVERSITY OF WISCONSIN	cine alth -MADISON		
Owner / User:			
Program Manager:			
Architect:			
ME Engineer:			
Commissioning Agent:	Tyson Glimme Henneman Engineering, Inc. 1232 Fourier Dr., Suite 101 Madison, WI 53717-1960		
LEED Version 2009 Commissioning Services			

Final Commissioning Report

- Separate sections (Similar to Preliminary Report):
 - Mechanical Testing
 - Service Water Testing
 - Electrical Systems Testing
- Results of all tests
- Disposition of deficiencies, including corrective measures
- Functional performance test procedures used during the commissioning process

02G1S WIMR - Center Tower

consists of occupancy sensors wired directly to the fixtures and mechanical system. The occupancy sensors are adaptive which means they learn the habits of the occupants to calculate the amount of time the person stays out of the office and adjusts. This feature is problematic to functional test but will result in a tuned system as the occupants use the building.

Commissioning Provider Observation Overview

Henneman Engineering was contracted directly through the State of Wisconsin Division of Facilities Development (DFD) to provide the Commissioning Authority (CxA) services for the Wisconsin Institutes for Medical Research Center Tower during programming and extending into the warranty phase. Our services include commissioning services for the mechanical, electrical and plumbing systems installed for the Center Tower project.

Overall the Wisconsin Institutes for Medical Research Center Tower project operates extraordinarily well. The entire Commissioning Team (see Section III) has worked very effectively through the course of this project to proactively resolve issues. The below summary identified the main struggles the commissioning team addressed during the commissioning process.

Fan Coil Units

A main challenge for the project from design review through the warranty phase was the location, accessibility and maintainability of the fan coil units located in the LER. During the design review we recognized the access to the fan coils would be problematic. Comments and discussions were documented to ensure the units had the appropriate access, the system access verified during submittal review, and access documented during field observations. At each stage the condition was reviewed with the client. Once the systems were installed maintenance staff expressed a few final concerns echoing the concerns of the commissioning team during the project. Final pipe routing adjustments were completed and the access has been approved at the time of this report.

Energy Recovery Wheels

The Energy Wheels are extremely effective for this project. During extreme cold weather the energy wheels have been able to maintain the space temperatures without the help of steam heat. This greatly reduces the need for steam and resulted in the PRV's being oversized.

During the first winter of operation, the general exhaust energy recovery wheels failed due to the wheel and motor not being aligned during -30°F outdoor air temperatures. AEI modified the original control strategy, the actuators were rewired, DDC Group reprogrammed the controls and Henneman Engineering functional tested the final operation. This operation was installed and functional tested in November of 2014 and will provide protection during wheel failure scenarios.

This project also implemented an energy saving measure to utilize OA downstream of the ERU's to widen the window the ERU can be utilized. This allows the system an infinite discharge setpoint range from the outside air temperature to the discharge air temperature set point while utilizing the energy wheels.

Heating Capacity

As the result of the energy recovery efficiency there is minimal heating load on the converters. During testing we were also able to maintain the water flow to the most remote VAV box (9th)

Commissioning Plan Construction Phase 2

is a quality oriented **process** for achieving, verifying and documenting that the performance of facilities, systems and assemblies meets defined objectives and criteria

Valuable Elements of the Commissioning Process

- No required design reviews
- No submittal reviews required
- No meetings required
- No interaction between the team to optimize performance.

Make YOUR Commissioning Process

- What are your goals for this project?
- Are they documented and reflected in the Cx Plan?
- How do you get there?
- Review the drawings to ensure goals are met
- Conduct meetings to stay on track
- Functional Testing preparedness meeting
- Systems do not get corrected by documentation
- Focus on Resolution

Lessons Learned

- Keep deficiency list from design review through construction.
 - Many troubling issues are identified during the design review process and resolved.
 - Some are re-introduced due to installation variances.

Demand Control Ventilation is extremely limited by hardware selections

- Fans have an optimum performance. Varying fan CFM significantly greatly effects performance and operation.
- Consider return fans.
- The relief plenum in an AHU is usually a second OA intake that costs \$XXX,XXX per year.
- Energy Recovery Units should have a bypass installed.
- Maintain the Construction Schedule through the end of the project.
- Hot water temperature reset must be considered during VAV selection.

Not Only Energy Savings

- Reduced maintenance time
- Increased equipment life
- Increased productivity due to less "Brush fires"
- Proactive maintenance plans
- Reduced change orders due to system corrections
- Improved indoor air quality
- Eliminate "inheriting" a project

International Energy Code General Commentary

Section 501:

The requirements contained in this chapter are applicable to commercial buildings, or portions of commercial buildings.

Section C401:

The provisions in this chapter are applicable to commercial buildings and their building sites.

