ASSOCIATES, LLC

ENGINEERING FUTURE FOCUSED SOLUTIONS

PRESENTERS

Andy LaFerriere, EIT, CEM Energy Engineer andyl@mepassociates.com

Dale Zank Business Development dalez@mepassociates.com

We continuously strive for excellence and **innovation** through **creative engineering solutions** to minimize environmental impact today and improve sustainable stewardship into the future.

INTRODUCTION

ASSOCIATES, LIC

Healthcare Facilities Energy Review

- Commercial Building Energy Consumption Survey (CBECS) lists healthcare facilities among highest annual energy consumers of all commercial building types
- Energy Use Intensity (EUI) can range from 50 to 250 kBtu/ft²/year depending on facility programming and age
- Goals of the presentation;
 - Assist in the identification of building systems and features that are high energy consumers
 - Identify energy conservation measures (small and large) that facility owners/management can implement to cost effectively lower site EUI
 - Discuss the importance of site energy reduction moving forward

APPROACH

Presentation Overview

- Small scale energy conservation measures
 - Lighting systems
 - Building envelope
 - Insulating exposed metal surfaces
 - Domestic hot water
 - Electric motors and drives
- Facilities retro commissioning
- Large scale energy conservation measures
 - HVAC systems and plants
 - On-site renewables
- Example healthcare projects
- Questions

Lighting Systems

- Change Lighting Source
 - Replace existing fixtures with high efficiency CFL or LED
 - Higher capital cost, reduced operating and maintenance costs
 - Reduced maintenance from higher run hours
 - LED typically rated for 50,000 hours
 - FL typically rated for 20,000 hours

Lighting Systems

- Daylight Harvesting
 - Dictated by architectural design of the building
 - Commercial codes identify space types where required
 - Typically not economically viable in retrofit projects

Lighting Systems

- Automatic Shutoff and Dimming
 - Reduce lighting run time and energy consumption through timers, occupancy sensors, and photocells
 - Commercial codes identify spaces types where this is required and cannot be used
 - Typically not economically viable in retrofit projects

Building Envelope

- General
 - Often difficult in building retrofit applications
 - Existing envelope typically does the job
 - Change is expensive
- Window upgrades
 - Significant contributor to envelope losses
 - Much easier to retrofit than roof and wall insulation
 - Typically will provide highest return on investment among envelope upgrades

Insulating Exposed Metal Surfaces

- Steam and hot water distribution piping
 - Systems losses and space conditioning
- Hot water storage tank(s)

Domestic Water Systems

- Low flow fixtures
- Rain water capture
- Water re-use

ENERGY CONSERVATION MEASURES Domestic Water Systems

Sewage treatment and re-use WASTE WATER TREATMENT LAWN WASH COOLING TOWER **IRRIGATION** MACHINES **SYSTEM** & TOILETS **SEWAGE INLET** SHARK HEAT **SYSTEM** PUMP **TO CITY SANITARY**

Domestic Water Systems

- High efficiency condensing style storage units
- Process heat recovery for pre-heat
- Instantaneous (tankless) heaters
 - Advantageous from space standpoint
 - Reduces system standby losses and associated with storage tank
 - Little to no gain in efficiency
 - Not common in large scale applications
 - Run multiple units in parallel to satisfy peak demand flow

Electric Motors and Drives

- Common types of drives
 - VFD drives
 - ECM motors
- Reduced energy and operational costs
 - Turn down to 20-30% of full load (ECM lower)
 - Eliminates cycling stresses

Retro Commissioning - Buildings Have a Personality

- What is your building's personality?
 - How does it respond to internal conditions?
 - How does it respond to weather changes?
 - Do you know your balance points between heating and cooling?
 - Do you know it's flaws?
 - Do you know where you stand on energy cost?
 - What improvements have been made?
 - Do they continue to climb?

 FIRST STEP IN RETRO COMMISSIONING IS TO KNOW YOUR BUILDING! Perform a building walkthrough and look at each room, each piece of equipment, the building envelop and your overall operation.

Retro Commissioning (RCx)

FOCUS ON ENERGY RCx Definition

- Holistic approach to energy efficiency
- Targets building systems, energy using equipment and operating schedules
- Optimize how all of these elements work together
- RCx can produce a significant cost savings in buildings
 - Biggest "Bang for the Buck" up to 15% in savings is very attainable
 - Normally lowest cost option for energy savings vs. major capital improvements

Note

- Needed capital improvements may be discovered during the RCx process
- This is not test and balancing but T&B may be a part of overall RCx

Air Handler Open Discussion

Front to Back What can effect its operation?

Air Handler Examples of Issues

- Outside air dampers
- Mixed air box
- Leaking ductwork
- Valves not opening/closing
- Outside, mixed, return air sensors
- Freeze stat malfunction
- Traps (steam and condensate)
- Controls (stats, actuators, program)
- Venting
- Overrides!

- Poor air circulation through the coil
- Plugged coils
- Filters, belts, bearings
- Dirty ductwork/fans
- Poor insulation
- Condensation
- Fan control
- Balancing water and air side
- VAVs out of set parameters
- Usage change!

Benefits of RCx

- Improved system(s) operation
- Improved equipment performance
- Longer life expectancy of equipment
- Increased asset value
- Energy savings
- Improved occupant comfort
- Improved indoor air quality
- Improved building documentation

It is truly a winning solution!

RCx Process

Planning

- Determine the project
- Determine objectives
- Document current operation
- Site walk thru
- Determine your team

Investigation

- Review available documentation
- Diagnostic monitoring
- Functional test
- Simple repairs
- Master list of findings
- Prioritize list of improvements

RCx Process

Implementation

- Develop plan
- Implement selected improvements
- Verify results

Final

- Final report
- Systems manual
- Training
- Implement on-going maintenance plan and operational strategy

Retro Commissioning

- Additional considerations
 - HW/CHW reset schedules
 - Air balancing for building zones
 - OQ and relief air dampers working correctly
 - Replacing faulty steam traps
 - Pneumatic valves working correctly
 - Compressed air leaks are very costly
 - Differential pressure sensors, airflow measure stations, and flow meters calibrated and working correctly
 - Can OA supply be reduced
 - Renovations often miss ability to reduce OA based on utilization change
 - BAS sequencing / schedule adjustments

Building HVAC Systems

Chilled Beams

- Reduced fan energy consumption
- Tighter constraints on space relative humidity
 - Leaky envelopes might not be feasible

Building HVAC Systems

VAV Systems

- Reduced fan energy consumption
- Increased occupancy comfort control
- Expensive retrofit
- Air side economizer
 - Utilize ambient air for space conditioning instead of mechanical cooling
 - Dry-bulb or enthalpy controlled
 - Code required in many climate regions based on quantity of ventilation airflow

Building HVAC Systems

ASSOCIATES, LLC

- Air side energy recovery
 - Sensible and latent recovery
 - Control supply temperature and humidity
 - Significant savings for systems utilizing lots of ventilation air
 - Example application OR supply temp
- Process heat recovery (hydronic)
 - Boiler flue (non-condensing boilers)
 - Kitchen
 - Laundry

Energy recovery unit serving the demand based ventilation

ASSOCIATES, LIC

Building HVAC Systems

Fluid (dry) coolers

- Utilize favorable ambient conditions to reject heat
- Typically utilized during the heating season
 - Size to handle base cooling load
- Close loop system
- Can be retrofit into existing chilled water system
 - Operating temperatures may require glycol and heat exchanger to decouple building loop
- Run fans instead of compressors

Building HVAC Systems

- Building Automation Systems (BAS)
 - Complete upgrades are very expensive
 - How can we optimize current system?
 - Pneumatics
 - Valves working properly
 - Replace faulty control boxes
 - DDC
 - Adjust logic, schedules, set points, etc. to optimize systems operation

Building HVAC Plants

- High efficiency conventional plants
 - Heat recovery chillers
 - Move energy between hot and chilled water loops
 - Requires base heating load for thermal rejection
 - Condensing boilers
 - Operate at lower supply temperatures
 - 93 98% efficient
 - Mag lev chillers
 - Very efficient (<0.5 kW/Ton)

Geothermal plants

- High operational efficiency
- Thermal storage capability
- Requires green space GLHE

Hybrid HVAC Systems

What is a hybrid system?

- Renewable coupled with conventional system
- Not always constrained by this dentition

Why are they beneficial?

- Capital cost reduction
- Energy and operational cost reduction

Common examples of hybrid systems

- Solar supplementation
- High efficiency base load equipment
- Waste water and/or sewage systems
- Geothermal hybrid

Hybrid HVAC Systems

Example Annual Cooling Load Profile

Hourly Cooling Load

Hour of Analysis Year

Hybrid HVAC Systems

Plant Cooling Load (Tons)

Hybrid System Optimization - Heat Pump Sizing

Hour of Analysis Year

Geothermal

- Geothermal
 - Modular heat pump systems
 - Hybrid systems

Using a Single Geothermal Heat Pump is equivalent to...

Geothermal

Heating & Cooling Loads with Simultaneous Load

COP Comparison

- Heating Mode:
 - Electric Heat: 100% efficient has a COP = 1
 - Boiler: 85% efficient has a COP = .85
 - Steam Boiler burner efficiency COP = .85
 - Overall Steam systems efficiency COP = .65
 - Heat Pump Chiller with 32 F EWT has a COP = 3.3
 - Simultaneous Heating and cooling COP = 6 (min.)

On-site Renewables

- Solar Array Applications
 - Solar thermal collectors
 - More efficient than solar PV
 - Domestic hot water heating and/or preheat
 - Geothermal well field balancing/reduction
 - Solar photo voltaic (PV) panels
 - On site electrical generation
 - Provide source electric to interior systems
 - Combined solar PVT arrays
 - Produce both electrical energy and hot water
 - Increased efficiency from water cooling of panels
 - New technology, still developing, higher cost

On-site Renewables

- Sewage Heat Recovery
 - How does it work?
 - Joint effort with municipality
 - System options
 - PIRANHA heat recovery only
 - SHARC heat recovery and rejection
 - Requires significant flow to be economically viable
 - Hybrid system implications
 - Capital cost reduction

ENERGY EFFICIENT SOLUTIONS FOR ALL FACILITIES

Energy

Recovery

Daylighting

Green Roof

Demand

Based

Ventilation

Slab

Heating Cooling

BTU/SF

ASSOCIATES, LLC

Regional Heart Doctors, Rapid, SD

- 34,000 SF
- 100 Ton W2W Heat Pump
- Operates at 47,000 btu/sf/year
- Dedicated outdoor air unit with energy recovery
- 4-pipe fan coil unit and in-floor heating in each patient room

Featured in ASHRAE Design Guide Advanced Energy Design Guide itals and Healthcare Facilities Regional Heart Doctors Black Hills ascular Researc

Regional Heart Doctors, Rapid, SD

THE HEART DOCTORS HEART & VASCULAR INSTITUTE	
Energy Savings Measure	Description of Element
Envelope	
Walls	6 in. metal studs with R-19 batt insulation.
Roof	R-20.
Vertical Glazing	Center of glass U-factor of 0.29, SHGC of 0.28.
Daylighting	
Windows	In patient exam rooms.
Skylights	In building interior.
Lighting	
Lighting Power Density	1.12 W/ft ² . 64 W 2x4 fixtures.
Electric Lighting Design	64 W 2x4 fixtures using T-8 lamps (includes parking lot lights).
Controls	Building energy management system.
HVAC	
Equipment	Water-to-water GSHP. Heat pump chiller with ice storage tank. Four-pipe fan-coils. Dedicated outdoor air unit with energy recovery.
Humidification	Humidifier control to minimize electrical demand load.
Service Water Heating	Preheat incoming water with waste heat from heat pumps.
Energy Use Characteristics	
Estimated Annual Energy Index Savings	17.1 kBtu/ft ² /yr.
Actual Energy Index	47 kBtu/ft ² /yr (2008 calendar year).
Estimated Annual Cost Savings	\$0.37/ft ² /yr.
Initial Investment Premium	\$4.30/ft ² /yr.
Total Cost per Square Foot	\$192/ft ² /yr.
Mechanical Cost per Square Foot	\$23/ft ² /yr.
Data and photographs provided by Cogdell Spencer ERDMAN.	

Ortonville Area Hospital Services, Ortonville, MN

- 49,218 SF
- 350 Ton W2W Heat Pump
- Estimated Annual Savings: \$69,914

Ortonville Area Hospital Services, Ortonville, MN

Total Monthly Energy Consumption (BTU/SF)

14000

HIT US WITH YOUR QUESTIONS

Thank You!

715.832.5680 www.mepassociates.com

ENGINEERING FUTURE FOCUSED SOLUTIONS.