AIR CONDITIONING FANS

An **Air Conditioning Clinic** brought to you by

June 2020

"Trane" is a Registered Provider with The American Institute of Architects Continuing Education System. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of Completion are available on request.

This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

INSTRUCTOR

- Michael Johnson

 Trane Madison, WI
 Systems Account Manager
- May 12, 2021

Air Conditioning Fans Agenda

Introduction	
Fan Performance	1
Fan Types	2
Fan Capacity Control	3
Application Considerations	4
Review	5
Quiz	

INTRODUCTION

forward curved centrifugal fan

fan array

LEARNING OBJECTIVES

- Recognize different types of fans used in HVAC systems
- Summarize the different types of fan capacity control available in the marketplace
- Identify the differences between static and velocity pressure
- Recognize where surge occurs on a fan map and realize the implications of selecting a fan at or near this threshold

FAN PERFORMANCE

IN THIS PERIOD

- Types of fan pressure
- Fan pressure measurement
- Fan performance curves
- Selecting a fan using performance curves

FAN PRESSURE

static pressure

The portion of the air pressure that exists by virtue of the degree of compression only.

FAN PRESSURE

velocity pressure

The portion of the air pressure that exists by virtue of the rate of motion only.

FAN PRESSURE

total pressure

The algebraic sum of the velocity pressure and the static pressure at a point.

$$P_t = P_v + P_s$$

MEASURING PRESSURE

MEASURING PRESSURE

INCLINED MANOMETER

MEASURING STATIC PRESSURE

MEASURING TOTAL PRESSURE

FAN PERFORMANCE TEST

DETERMINING FAN AIRFLOW

Velocity Pressure
$$(P_v) = P_t - P_s$$

Velocity (V) = Constant × $\sqrt{\frac{P_v}{\rho}}$

Airflow = Velocity × Fan Outlet Area

airflow

airflow

airflow

27

INPUT POWER

FAN SURGE

SURGE LINE

airflow

PERCENT WIDE-OPEN AIRFLOW

static pressure

TABULAR PERFORMANCE DATA

Std. Air Flow (CFM)	Outlet Velocity	Total Static Pressure (in. wg)															
		Velocity 0.5		1.0		1.5		2.0		2.5		3.0		3.5		4.0	
	(CFM)	(ft/min)	RPM	BHP	RPM	BHP	RPM										
5950	1714	423	1.22	536	1.75	643	2.35	734	2.96	818	3.62	903	4.40	983	5.24	1054	6.21
6800	1959	451	1.64	555	2.22	651	2.89	742	3.56	821	4.25	895	4.98	971	5.81	1044	6.72
7650	2203	479	2.15	576	2.81	664	3.49	750	4.27	831	5.03	901	5.79	969	6.59	1033	7.44
8500	2448	510	2.78	601	3.52	684	4.24	760	5.04	837	5.91	912	6.76	976	7.59	1037	8.45
9350	2693	542	3.53	629	4.34	705	5.14	777	5.93	848	6.87	917	7.82	986	8.76	1047	9.69
10200	2938	575	4.39	657	5.30	730	6.19	799	7.04	863	7.92	928	8.98	992	10.01	1055	11.03

Std. Air Flow (L/S)	Outlet Velocity	Itlet Total Static Pressure (Pa.)															
		locity 124.55		249.1		373.65		498.2		622.75		747.3		871.85		996.4	
	(L/S)	(m/s)	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM
2808	8.71	423	0.91	536	1.31	643	1.75	734	2.20	818	2.70	903	3.28	983	3.91	1054	4.63
3210	9.95	451	1.22	555	1.65	651	2.15	742	2.66	821	3.17	895	3.71	971	4.33	1044	5.01
3611	11.19	479	1.60	576	2.10	664	2.60	750	3.19	831	3.75	901	4.32	969	4.92	1033	5.55
4012	12.44	510	2.07	601	2.62	684	3.16	760	3.76	837	4.41	912	5.04	976	5.66	1037	6.30
4413	13.68	542	2.63	629	3.24	705	3.83	777	4.43	848	5.13	917	5.83	986	6.53	1047	7.22
4814	14.92	575	3.28	657	3.95	730	4.61	799	5.25	863	5.90	928	6.70	992	7.47	1055	8.23

SYSTEM RESISTANCE

SYSTEM RESISTANCE CURVE

SYSTEM RESISTANCE CURVE

SYSTEM RESISTANCE CURVE

FAN-SYSTEM

airflow

HIGHER SYSTEM RESISTANCE

LOWER SYSTEM RESISTANCE

airflow

STATIC EFFICIENCY

$SE = \frac{\text{Airflow} \times \text{Static Pressure}}{\text{Constant} \times \text{Input Power}}$

STATIC EFFICIENCY

SYSTEM RESISTANCE CURVE

static pressure

VARIABLE-PITCH VANEAXIAL FAN

VPVA FAN CURVES

VPVA FAN CURVES

CENTRIFUGAL FAN

FORWARD CURVED FAN

FORWARD CURVED FAN

FORWARD CURVED FAN

FORWARD CURVED FAN

51

BACKWARD INCLINED FAN

BACKWARD INCLINED FAN

FORWARD CURVED VS. BACKWARD INCLINED FANS

BACKWARD INCLINED FAN

55

BACKWARD INCLINED FAN

BACKWARD CURVED FAN

backward inclined

backward curved

AIRFOIL FAN

AIRFOIL FAN

PLENUM FAN

DIRECT-DRIVE PLENUM FAN

MOTORIZED IMPELLER FANS

VANEAXIAL FAN

airflow

VANEAXIAL FAN

64

VARIABLE-PITCH VANEAXIAL FAN

VPVA FAN

FAN ARRAY

upstream (inlet) side

downstream (outlet) side

FAN SELECTION

Forward curved (FC)

 $\,\circ\,$ Lower airflow, lower static pressure, lower first cost

Backward inclined (BI) or airfoil (AF)

o Higher airflow, higher static pressure, higher efficiency

Vaneaxial

o Limited space, limited availability

Variable-pitch vaneaxial (VPVA)

o Large systems, higher airflow, limited availability

Direct-Drive Plenum Fan

o More reliable, able to pressurize a plenum for multiple duct outlets

Fan Array

 $_{\odot}$ Smaller overall length than direct-drive fans, offers some redundancy

73
FAN CONTROL LOOP

VAV SYSTEM

METHODS OF FAN CAPACITY CONTROL

- Discharge dampers
- Inlet vanes
- Fan-speed control
- Variable-pitch blade control

DISCHARGE DAMPERS

FAN CAPACITY CONTROL WITH DISCHARGE DAMPERS

static pressure

INLET VANES

VAV SYSTEM

FAN CAPACITY CONTROL WITH INLET VANES

FAN-SPEED CONTROL

Variable-speed drives:

- adjust the frequency that is applied to the motor
- can precisely control the fan motor speed for both design and part-load conditions

FAN CAPACITY CONTROL WITH FAN SPEED CONTROL

VARIABLE-PITCH BLADE CONTROL

VPVA SYSTEM

total pressure

SYSTEM STATIC-PRESSURE CONTROL

OPTIMIZED STATIC-PRESSURE CONTROL

SYSTEM EFFECT

airflow

SYSTEM EFFECT

5 return reakout return airborne supply breakout supply airborne 1 2 wall transmission

ACOUSTICAL GUIDELINES

- Optimize fan and air-handler selection for lowest overall sound
- Select fan to operate safely away from surge region
- Minimize system effects
- Use low-pressure-drop duct fittings (follow SMACNA[®] recommendations)
- Avoid rectangular sound traps, if possible
- Use adequate vibration isolation

EFFECT OF ACTUAL CONDITIONS

1. Air Density Ratio =
$$\frac{\text{Density}_{actual}}{\text{Density}_{standard}}$$

2.
$$SP_{standard} = \frac{SP_{actual}}{Air Density Ratio}$$

- 3. Use Airflow_{actual} and SP_{standard} to select fan
- 4. RPM_{standard} = RPM_{actual}
- 5. Power_{actual} = Air Density Ratio × Power_{standard}

EQUIPMENT CERTIFICATION STANDARDS

Purpose

Establish methods for laboratory testing of air moving devices

PERIOD ONE

airflow

PERIOD TWO

axial

centrifugal

PERIOD THREE

- Riding the fan curve
- Discharge dampers
- Inlet vanes
- Fan-speed control
- Variable-pitch blade control

PERIOD FOUR

- System static-pressure control
- System effect
- Acoustics
- Effect of actual (nonstandard) conditions on fan selection
- Equipment certification standards

Β

102

FAN MAINTENANCE

BELT-DRIVEN FANS

- Fan shaft(s) are straight
- Fan bearings rotate smooth
- Sheaves are in good working order
- Sheaves are secure to shafts/bushings
- Belts are in good shape
- Belts are tightened properly
- Fan and Motor bearings are greased
- Motor secure to base and isolators are in good cond.

BELT-DRIVEN FANS

Tightening Belts properly

 Measuring tension by Deflection
 Measuring tension by Frequency
 Using a Tension Finder

DIRECT-DRIVE FANS

- Motor is secured to base
- Isolating springs/pads are in good working cond.
- Motor is not overheating
- Motor bearings are running smooth and greasedFan wheel is in good working order & in balance

BMS ALARMS

- Do your due-diligence
 - \circ check on equipment after faults are back online
 - \circ don't assume the electronics know everything

SYSTEM MAINTENANCE

Check downstream equipment like VAVsCheck entering and leaving ductwork

RETRO-FITTING SYSTEMS

- Upgrading filters
- Increased airflow
- Change in fan type
- Total Cost of Ownership (design, construction, maintenance, energy)

THANK YOU

MICHAEL JOHNSON

- Systems Account Manager, Madison, WI
- michaeljohnson@trane.com
- Mobile: 608-440-0989